
Dos and Don’ts of
Client Authentication
on the Web

Kevin Fu

UMass-Amherst
Department of Computer Science

www.cs.umass.edu

kevinfu
Text Box
Based on USENIX Security 2001 paper by same name. Versions of this talk were given several times. History on:http://www.cs.umass.edu/~kevinfu/talks.html

What this talk is about
• Improving the security of client authentication
on the Web

Where are we now?
• We have HTTP authentication

Where are we now?
• We have HTTP authentication

• We’ve had SSL for nearly a decade

Where are we now?
• We have HTTP authentication

• We’ve had SSL for nearly a decade

• Client authentication should be easy, right?

Many Web sites get it wrong

Site Security problem
WSJ.com crypto misuse, secret key exposed
tiffany.com SQL injection
opentable.com guessable user IDs
cooking.com guessable user IDs
SprintPCS.com leaks authenticator in plaintext
FatBrain.com predictable session ID
HighSchoolAlumni.com circumvent password authentication
PerformanceBike.com predictable session ID
ihateshopping.net circumvent password authentication

Toolkits are vulnerable too

Toolkit Security problem
BlueMartini missing authentication check
Allaire ColdFusion predictable session IDs, LCNG
ArsDigita ACS signs ambiguous messages
Jakarta TomCat predictable session IDs, random seed
PHP session IDs based on time of day

How is it done?

So how do Web sites implement
user authentication?

Cookies: what are they?
• A Web server can store key/value pairs on a
client

• The browser resends cookies in subsequent
requests to the server

• Cookies can implement login sessions

Sample cookie

domain .wsj.com
Path /cgi
SSL? FALSE
Expiration 941452067
Variable name fastlogin
Value bitdiddleMaRdw2J1h6Lfc

Cookies for login sessions
Web server

POST /login.cgi

Web browser
1

Cookies for login sessions

1
Web server

POST /login.cgi

Web browser

Set−Cookie: authenticator"Welcome in" Web page
2

Cookies for login sessions

3

Web server
POST /login.cgi

Web browser

Set−Cookie: authenticator"Welcome in" Web page

Cookie: authenticator

GET /restricted/index.html

2

1

Cookies for login sessions

4

Web server
POST /login.cgi

Web browser

Set−Cookie: authenticator"Welcome in" Web page

Cookie: authenticator

GET /restricted/index.html

Content of restricted page

2

1

3

What adversaries do we fear?
Active adversary

Passive adversary
Interrogative adversary

• Adaptively query a server

• Eavesdrop on traffic

• Modify/inject traffic, man-in-the-middle attack

A system must AT LEAST protect against the
interrogative adversary!

Interrogative adversary
• Adaptively query a Web server a reasonable
number of times

• Treat server as an oracle for an adaptive
chosen message attack

• Extremely limited, but surprisingly powerful

Types of breaks
• Replay

• Existential forgery

• Selective forgery

• Total break

The cookie crumbles...
Many Web sites that have invented their own
homebrew cookie-based authentication schemes.

Case studies of Web authentication
• Lack of cryptography:
HighSchoolAlumni.com

• Trusting user input: Instant Shop

• Leaking secrets: SprintPCS.com

• Predictable sequence numbers: FatBrain.com

• Missing authentication check: BlueMartini

• Misuse of cryptography: WSJ.com

Lack of cryptography
• Site: HighSchoolAlumni.com

• Problem: No cryptographic authentication

• Adversary: Interrogative

• Break: Universal forgery

• Today: Sold to another reunion site

Instant Shop: What’s inside
<form action=commit sale.cgi>
<input type=hidden name=item1 value=10>Batteries

$10
<input type=hidden name=item2 value=99>Biology

textbook $99
<input type=hidden name=item3 value=25>Britney

Spears CD $25
<input type=submit>Confirm purchase
</form>

Instant Shop: Malicious user
<form action=commit sale.cgi>
<input type=hidden name=item1 value=0>Batteries

$10
<input type=hidden name=item2 value=0>Biology

textbook $99
<input type=hidden name=item3 value=0>Britney

Spears CD $25
<input type=submit>Confirm purchase
</form>

Trusting user input
• Site: Instant Shop

• Problem: Server trusts users not to modify
HTML variables

• Adversary: Interrogative

• Today: Out of business

Leaking secrets
• Site: SprintPCS.com

• Problem: Secure content can leak through
plaintext channels

• Adversary: Eavesdropper

• Break: Replay

• Today: A leading provider of mobile phone
service...

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=attacker@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp? !
t=0&p1=victim@mit.edu&p2=540555757

Target: https://www.fatbrain.com/HelpAccount.asp?
t=0&p1=victim@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=attacker@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp? !
t=0&p1=victim@mit.edu&p2=540555756

Target: https://www.fatbrain.com/HelpAccount.asp?
t=0&p1=victim@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=attacker@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp? !
t=0&p1=victim@mit.edu&p2=540555755

Target: https://www.fatbrain.com/HelpAccount.asp?
t=0&p1=victim@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=attacker@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp? !
t=0&p1=victim@mit.edu&p2=540555754

Target: https://www.fatbrain.com/HelpAccount.asp?
t=0&p1=victim@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=attacker@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp? !
t=0&p1=victim@mit.edu&p2=540555753

Target: https://www.fatbrain.com/HelpAccount.asp?
t=0&p1=victim@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=attacker@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp? "
t=0&p1=victim@mit.edu&p2=540555752

Target: https://www.fatbrain.com/HelpAccount.asp?
t=0&p1=victim@mit.edu&p2=540555752

Predictable sequence numbers
• Site: FatBrain.com

• Problem: Customer can determine the
authenticator for any other user

• Adversary: Interrogative

• Break: Selective forgery

• Today: Acquired by Barnes & Noble

FatBrain response
“It’s frustrating that programmers ... continue to
fall prey to the same old tricks. Simple problems
like lazy sequence numbers and buffer overflows in
most cases can be easily eliminated if we as
programmers would be a little vigilant about sound
design and solid code reviews. I just *love* being
at work on a Friday at midnight managing
unscheduled production releases. :)”

Missing authentication check
• Sites: saksfifthavenue.com, kohls.com,
iomega.com, et al

• Problem: Customers can download order
history of all users

• Adversary: Interrogative

• Break: Universal forgery

• Today: The sites have added the check

BlueMartini: missing authentication check
https://www.saksfifthavenue.com/
POST /myaccount/order history new.jsp HTTP/1.0
Host: www.saksfifthavenue.com

bmForm=order history new&
bmHidden=VIEW ORDER<>&
VIEW ORDER<>orh id=12366456

WSJ.com login process
• User enters name and password

• If the password is correct, WSJ.com issues a
cookie

• User surfs to restricted content and attaches
cookie

• If the cookie is authentic, WSJ.com returns
content

WSJ.com analysis
• Design: cookie = {user, MACk (user)}

• Reality: cookie =
user + UNIX-crypt (user + server secret)

WSJ.com analysis cont.
username crypt() Output Authenticator cookie
bitdiddl MaRdw2J1h6Lfc bitdiddlMaRdw2J1h6Lfc
bitdiddle MaRdw2J1h6Lfc bitdiddleMaRdw2J1h6Lfc

• Usernames matching first 8 characters have
same authenticator

• No expiration

Obtaining the server secret?
• Adaptive chosen message attack

• Perl script queried WSJ with invalid cookies

• Runs in max 128× 8 queries rather than
intended 1288 (1024 vs.
72057594037927936)

• 1 sec/query yields 17 minutes vs. 109 years

• The key is “March20”

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

A bitdidd bitdiddA !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

B bitdidd bitdiddB !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

C bitdidd bitdiddC !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

D bitdidd bitdiddD !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

E bitdidd bitdiddE !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

F bitdidd bitdiddF !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

G bitdidd bitdiddG !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

H bitdidd bitdiddH !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

I bitdidd bitdiddI !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

J bitdidd bitdiddJ !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

K bitdidd bitdiddK !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

L bitdidd bitdiddL !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MA bitdid bitdidMA !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MB bitdid bitdidMB !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MC bitdid bitdidMC !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MD bitdid bitdidMD !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

ME bitdid bitdidME !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MF bitdid bitdidMF !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MG bitdid bitdidMG !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MH bitdid bitdidMH !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MI bitdid bitdidMI !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MJ bitdid bitdidMJ !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

MK bitdid bitdidMK !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

ML bitdid bitdidML !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

MaA bitdi bitdiMaA !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

Mar bitdi bitdiMar "

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

Mar bitdi bitdiMar "

Marb bitd bitdMarb !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

Mar bitdi bitdiMar "

Marc bitd bitdMarc "

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

Mar bitdi bitdiMar "

Marc bitd bitdMarc "

Marcg bit bitMarcg !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

Mar bitdi bitdiMar "

Marc bitd bitdMarc "

March bit bitMarch "

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

Mar bitdi bitdiMar "

Marc bitd bitdMarc "

March bit bitMarch "

March1 bi biMarch1 !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

Mar bitdi bitdiMar "

Marc bitd bitdMarc "

March bit bitMarch "

March2 bi biMarch2 "

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

Mar bitdi bitdiMar "

Marc bitd bitdMarc "

March bit bitMarch "

March2 bi biMarch2 "

March2/ b bMarch2/ !

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl "

M bitdidd bitdiddM "

Ma bitdid bitdidMa "

Mar bitdi bitdiMar "

Marc bitd bitdMarc "

March bit bitMarch "

March2 bi biMarch2 "

March20 b bMarch20 "

Misuse of cryptography
• Site: WSJ.com

• Problem: Weaker than plaintext passwords

• Adversary: Interrogative

• Break: Universal forgery

• Today: The token got longer...

“... about the factors affecting design decisions, it is
certainly result of time to market considerations. ... we
simply didn’t have clear security requirements defined
within the group and outside the group. So, we did what
worked. We tried a better encryption algorithm, but hit a
bug that we couldn’t fix, so we implemented one that
worked even though the architect in charge was fully
aware of its short-comings. You must understand that
I’m giving you my read on the situation since I’ve joined
WSJ.com just 5 weeks ago.”

— Javeh Saleh, Vice President, Technology

Interactive Business Technology Services, WSJ.com

Why cookies?
• SSL is computationally expensive

• No one outside enterprises uses SSL client
certificates

• Browsers offer an inflexible GUI for HTTP
authentication

• Popular browsers implement cookies

HTTPS vs. HTTP handshake cost

HTTP SSL
0

500

1000

1500

C
on
ne
ct
io
ns
/se
c

1493

11

How did we break these schemes?
• Gathered public information
– Observe usernames and Web server HTTP
responses

– Obtain sample authenticators

– Create guest accounts

• Observe authenticators while varying
parameters

• No eavesdropping

Hints for client authentication
• Limit the lifetime of authenticators

• Make authenticators unforgeable

• Sign what you mean

Limit the lifetime of authenticators
• Browsers cannot be trusted to expire cookies

• No revocation of WSJ cookies

Make authenticators unforgeable
• Prevent modification of the cookie

• Do not allow bypass of password
authentication

• Encryption alone does not prevent forgery

• HighSchoolAlumni.com

Sign what you mean!
• badauth = sign (username + expiration, key)
– (Alice, 21-Apr-2003)

→ sign (Alice21-Apr-2003, key)
– (Alice2, 1-Apr-2003)

→ sign (Alice21-Apr-2003, key)

• Same authenticator!
“Alice” + “21-Apr-2003” ==
“Alice2” + “1-Apr-2003”

• Use unambiguous representation or delimiters

A scheme that mostly works
auth = capa + expire + MACk(capa + expire)

where MAC could be HMAC-SHA1,
capa could be an encrypted capability,

expire represents an encrypted expiration, and
’+’ denotes concatenation with a delimiter

Secure against interrogative adversary

A scheme that mostly works
auth = capa + expire + MACk(capa + expire)

where MAC could be HMAC-SHA1,
capa could be an encrypted capability,

expire represents an encrypted expiration, and
’+’ denotes concatenation with a delimiter

Secure against interrogative adversary
Still missing: A policy language for the

capability

The interrogative adversary defeats...
• SSL client authentication? No.

• HTTP Basic or Digest authentication? No.

• Homebrew cookie authentication schemes?
Often...

Vulnerability disclosure
• Vulnerability reporting is 1% technical
analysis and 99% proper handling of
disclosure.

• Report the bug to the vendor first. Then ask
how long they need.

• There are release cycles and QA testing
procedures. Be patient.

• Most companies are reasonable.

• If you are nice, you might get a free T-shirt. :-)

Summary
• Many schemes broken easily by the
interrogative adversary

• Hints could prevent vulnerabilities

• There is a simple scheme that works

• Cookies are limited; live with it or move on

